
1 - 8 Direction Fields, Solution Curves
Graph a direction field. In the field graph several solution curves, particularly those
passing through the given points (x,y).

1. y ' = 1 + y2, π4 , 1

ClearAll["Global`*⋆"]

{{y → Function[{x}, Tan[x + C[1]]]}}

dfield = VectorPlot1, 1 + y2, {x, -−4, 4},
{y, -−4, 4}, Axes → True, VectorScale → {Automatic},

AxesLabel → "x", "dydx=1+y2", GridLines →
π

4
, {1};

solu = DSolvey'[x] -− 1 -− y[x]2 ⩵ 0, y
π

4
 ⩵ 1, y, x;

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

ppp1 = Plot[y[x] /∕. solu, {x, -−4, 4}, PlotStyle → {Pink, Medium}];
pppl =

ListPlot
π

4
, 1, PlotStyle → {Red, Large}, PlotMarkers → {□, 19};

Show[dfield, ppp1, pppl]

2. y[x] y '[x] + 4x = 0, (1,1), (0,2)

ClearAll["Global`*⋆"]

sol1 = DSolve[{y[x] y'[x] + 4 x ⩵ 0, y[1] ⩵ 1}, y, x]

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadto an emptysolution. $

y → Function{x}, 5 -− 4 x2

pppl1 =
ListPlot[{{1, 1}}, PlotStyle → {Pink, Large}, PlotMarkers → {□, 19}];

sol2 = DSolve[{y[x] y'[x] + 4 x ⩵ 0, y[0] ⩵ 2}, y, x]

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadto an emptysolution. $

y → Function{x}, 2 1 -− x2

pppl2 = ListPlot[{{0, 2}}, PlotStyle → {Red, Large}, PlotMarkers → {□, 19}];

dfield1 = VectorPlot1, -−4 x
1

y
, {x, -−2, 2}, {y, -−2, 2}, Axes → True,

AxesLabel → "x", "dydx=
-−4 x

y[x]
", VectorScale → {Large},

VectorPoints → {10}, GridLines → {{0, 1}, {1, 2}};
ppp1 = Plot[y[x] /∕. sol1, {x, -−2, 2}, PlotStyle → {Pink, Medium}];
ppp2 = Plot[y[x] /∕. sol2, {x, -−2, 2}, PlotStyle → {Red, Medium}];

Show[dfield1, ppp1, ppp2, pppl1, pppl2]

3. y ' = 1 - y2, (0, 0), 2, 1
2

2 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

3. y ' = 1 - y2, (0, 0), 2, 1
2

ClearAll["Global`*⋆"]

pp1 = DSolvey'[x] + y[x]2 ⩵ 1, y[0] ⩵ 0, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

y → Function{x},
-−1 + ⅇ2 x

1 + ⅇ2 x

pppl1 =
ListPlot[{{0, 0}}, PlotStyle → {Blue, Large}, PlotMarkers → {□, 19}];

pp2 = DSolvey'[x] + y[x]2 ⩵ 1, y[2] ⩵
1

2
, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

y → Function{x},
-−ⅇ4 + 3 ⅇ2 x

ⅇ4 + 3 ⅇ2 x

pppl2 =

ListPlot2,
1

2
, PlotStyle → {Red, Large}, PlotMarkers → {□, 19};

dfield1 = VectorPlot1, 1 -− y2, {x, -−3, 3},
{y, -−2, 2}, Axes → True, VectorScale → {Automatic},

AxesLabel → "x", "dydx=1-−y2", GridLines → {2},
1

2
;

ppp1 = Plot[y[x] /∕. pp1, {x, -−3, 3}, PlotStyle → {Blue, Medium}];
ppp2 = Plot[y[x] /∕. pp2, {x, -−3, 3}, PlotStyle → {Red, Medium}];

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 3

Show[dfield1, ppp1, ppp2, pppl1, pppl2]

4. y ' = 2y - y2, (0, 0), (0, 1), (0, 2), (0, 3)
ClearAll["Global`*⋆"]

pp1 = DSolvey'[x] -− 2 y[x] + y[x]2 ⩵ 0, y[0] ⩵ 0, y, x

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadto an emptysolution. $

{}

pp2 = DSolvey'[x] -− 2 y[x] + y[x]2 ⩵ 0, y[0] ⩵ 1, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

y → Function{x},
2 ⅇ2 x

1 + ⅇ2 x

ppp2 = Plot[y[x] /∕. pp2, {x, -−4, 4}, PlotStyle → {Red, Medium}];

pppl2 = ListPlot[{{0, 1}}, PlotStyle → {Red, Large}, PlotMarkers → {□, 19}];

pp3 = DSolvey'[x] -− 2 y[x] + y[x]2 ⩵ 0, y[0] ⩵ 2, y, x

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadto an emptysolution. $

{}

4 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

pp4 = DSolvey'[x] -− 2 y[x] + y[x]2 ⩵ 0, y[0] ⩵ 3, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

y → Function{x},
6 ⅇ2 x

-−1 + 3 ⅇ2 x

ppp4 = Plot[y[x] /∕. pp4, {x, -−4, 4}, PlotStyle → {Blue, Medium}];

pppl4 =
ListPlot[{{0, 3}}, PlotStyle → {Blue, Large}, PlotMarkers → {□, 19}];

dfield1 = VectorPlot1, 2 y -− y2, {x, -−4, 4},
{y, -−4, 4}, Axes → True, VectorScale → {Automatic},
AxesLabel → "x", "dydx=2y-−y2", GridLines → {{0}, {1, 3}};

Show[dfield1, ppp2, ppp4, pppl2, pppl4]

5. y ' = x - 1y , 1, 1
2

ClearAll["Global`*⋆"]

pp1 = NDSolvey'[x] ⩵ x -−
1

y[x]
, y[1] ⩵

1

2
, y, {x, -−4, 1.2}

y → InterpolatingFunction Domain: {{-−4., 1.2}}
Output: scalar

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 5

pp1x =

NDSolvey'[x] ⩵ x -−
1

y[x]
, y[1] ⩵

1

2
, y, {x, 1.5, 4}, Method → {"BDF"}

NDSolve::ndsz: At x == 1.202176003905145`, stepsize is effectivelyzero; singularityor stiffsystemsuspected. $

NDSolve::ndsz: At x == 1.202176003905145`, stepsize is effectivelyzero; singularityor stiffsystemsuspected. $

NDSolve`ProcessSolutions::nodata: No solutiondatawascomputedbetween x == 1.5 ̀and x == 4.`.

{}

The inability to ‘get past’ the problem x-value means, I guess, that it is not just an asymp-
tote. I tried all the Methods in the docs, but still could not get a solution in the dead zone. I
might be able to get an interpolating polynomial and plot something from that. However,
the problem description did not claim that the function extended past x=1.202, so I will
just let it go. However, one last try before I go. The following does return a symbolic solu-
tion, but the table based on the symbolic form crashes.

cf = DSolvey'[x] ⩵ x -−
1

y[x]
, y[1] ⩵

1

2
, y[x], x;

N[Table[Re[cf[n]], {n, 1, 2, 0.2}]];
Solve::inex:

Solvewasunableto solvethesystemwithinexactcoefficientsor thesystemobtainedby directrationalizationof inexact
numberspresentin thesystem. Sincemanyof themethodsusedby Solverequire
exactinput, providingSolvewithan exactversionof thesystemmayhelp. $

ppp1 = Plot[Evaluate[y[x] /∕. pp1],
{x, -−4, 1.2}, PlotRange → All, PlotStyle → {Red, Medium}];

pppl1 =

ListPlot1,
1

2
, PlotStyle → {Red, Large}, PlotMarkers → {□, 19};

6 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

dfield1 = VectorPlot1, x -−
1

y
, {x, -−4, 4}, {y, -−4, 4},

Axes → True, VectorScale → {Small}, VectorPoints → {10},

AxesLabel → "x", "dydx=x-−
1

y
", GridLines → {1},

1

2
;

Show[dfield1, ppp1, pppl1]

6. y ' = sin2 y, (0, -−0.4), (0, 1)
ClearAll["Global`*⋆"]

pp1 = DSolvey'[x] ⩵ Sin[y[x]]2, y[0] ⩵ -−0.4, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

{{y → Function[{x}, -−ArcCot[2.36522 + x]]}}

pppl1 =
ListPlot[{{0, -−0.4}}, PlotStyle → {Blue, Large}, PlotMarkers → {□, 19}];

pp2 = DSolvey'[x] ⩵ Sin[y[x]]2, y[0] ⩵ 1, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

{{y → Function[{x}, -−ArcCot[x -− Cot[1]]]}}

pppl2 = ListPlot[{{0, 1}}, PlotStyle → {Red, Large}, PlotMarkers → {□, 19}];

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 7

ppp1 = Plot[y[x] /∕. pp1, {x, -−4, 4}, PlotStyle → {Blue, Medium}];
ppp2 = Plot[y[x] /∕. pp2, {x, -−4, 4}, PlotStyle → {Red, Medium}];

dfield1 = VectorPlot1, Sin[y]2, {x, -−4, 4},
{y, -−4, 4}, Axes → True, VectorScale → {Automatic},
AxesLabel → "x", "dydx=Sin[y[x]]2", GridLines → {{0}, {-−0.4, 1}};

Show[dfield1, ppp1, ppp2, pppl1, pppl2]

7. y ' = ⅇ
y
x , (2, 2), (3, 3)

ClearAll["Global`*⋆"]

pp1 = NDSolvey'[x] ⩵ Exp
y[x]

x
, y[2] ⩵ 2, y, {x, -−10, 3.4}

General::ovfl: Overflowoccurredin computation. $

NDSolve::nlnum:
The functionvalue {Overflow[]} is nota listof numberswithdimensions {1} at {x, y[x]} = -−0.0014555, -−4.78979×10116. $

NDSolve::ndsz: At x == 3.3506905534300406`, stepsize is effectivelyzero; singularityor stiffsystemsuspected. $

y → InterpolatingFunction Domain: {{0.00672, 3.35}}
Output: scalar

8 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

pp2 = NDSolvey'[x] ⩵ Exp
y[x]

x
, y[3] ⩵ 3, y, {x, -−10, 5}

General::ovfl: Overflowoccurredin computation. $

NDSolve::nlnum:
The functionvalue {Overflow[]} is nota listof numberswithdimensions {1} at {x, y[x]} = -−0.00260554, -−3.04976×1097. $

y → InterpolatingFunction Domain: {{0.00788, 5.}}
Output: scalar

ppp1 = Plot[Evaluate[y[x] /∕. pp1],
{x, -−10, 3.4}, PlotRange → All, PlotStyle → {Red, Medium}];

pppl1 = ListPlot[{{2, 2}}, PlotStyle → {Red, Large},
PlotMarkers → {□, 19}];

ppp2 = Plot[Evaluate[y[x] /∕. pp2], {x, -−10, 5},
PlotRange → All, PlotStyle → {Blue, Medium}];

InterpolatingFunction::dmval:
Inputvalue {-−9.99973} liesoutsidethe rangeof datain the interpolatingfunction. Extrapolationwillbe used. $

InterpolatingFunction::dmval:
Inputvalue {-−9.99969} liesoutsidethe rangeof datain the interpolatingfunction. Extrapolationwillbe used. $

pppl2 =
ListPlot[{{3, 3}}, PlotStyle → {Blue, Large}, PlotMarkers → {□, 19}];

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 9

dfield1 = VectorPlot1, Exp
y

x
, {x, -−10, 30},

{y, -−4, 4}, Axes → True, VectorScale → Automatic,

AxesLabel → "x", "dydx=Exp[
y

x
]", GridLines → {{2, 3}, {2, 3}};

Show[dfield1, ppp1, ppp2, pppl1, pppl2]

8. y ' = -2xy, (0, 1
2 , (0, 1)

ClearAll["Global`*⋆"]

pp1 = DSolvey'[x] ⩵ -−2 x y[x], y[0] ⩵
1

2
, y, x

y → Function{x},
ⅇ-−x2

2

pp2 = DSolve[{y'[x] ⩵ -−2 x y[x], y[0] ⩵ 1}, y, x]

y → Function{x}, ⅇ-−x2

ppp1 = Plot[y[x] /∕. pp1, {x, -−4, 4}, PlotStyle → {Blue, Medium}];

pppl1 =

ListPlot0,
1

2
, PlotStyle → {Blue, Large}, PlotMarkers → {□, 19};

10 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

ppp2 = Plot[y[x] /∕. pp2, {x, -−4, 4}, PlotStyle → {Red, Medium}];
pppl2 =

ListPlot[{{0, 1}}, PlotStyle → {Red, Large}, PlotMarkers → {□, 19}];
dfield1 = VectorPlot{1, -−2 x y}, {x, -−2, 6}, {y, -−4, 4},

Axes → True, VectorScale → {Automatic},

AxesLabel → {"x", "dydx=-−2xy"}, GridLines → {0},
1

2
, 1;

Show[dfield1, ppp1, ppp2, pppl1, pppl2]

9 - 10 Accuracy of direction fields
Direction fields are very useful because they can give you an impression of all solutions
without solving the ODE, which may be difficult or even impossible. To get a feel for the
accuracy of the method, graph a field, sketch solution curves in it, and compare them
with the exact solutions.

9. y ' = Cos[π x]

ClearAll["Global`*⋆"]

I solve the ODE, but what is wanted for the plot is the not the solution but the ODE itself.
sol9 = DSolve[{ y'[x] ⩵ Cos[π x]}, y, x]

y → Function{x}, C[1] +
Sin[π x]

π

I had to do some unexplained hand fitting of the plot, modifying the argument. It seems
that StreamPlot will not conform to the domain I expected, and to show the two plots
together, the function plot has to be shifted. Since the function is periodic, I assume its
character is not compromised thereby.

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 11

I had to do some unexplained hand fitting of the plot, modifying the argument. It seems
that StreamPlot will not conform to the domain I expected, and to show the two plots
together, the function plot has to be shifted. Since the function is periodic, I assume its
character is not compromised thereby.

pp1 = PlotCosπ x -−
π

2
, {x, 0, 2}, PlotStyle → {Pink, Thickness[0.01]};

I make a table to superimpose points from the customized function.

grek = Tablen, Cosπ n -−
π

2
, {n, 0, 2.5, 0.05};

The StreamPlot is easier to manipulate than a VectorPlot, in spite of its recalcitrance.
Because the first number, here 0.3, is clearly a scaling factor, I hope it is permissible to use
whatever seems best for it.
sp1 = StreamPlot[{0.3, Cos[π t]}, {t, 0, 2}, {y, -−1, 1}];

(*⋆sp3=
StreamPlot[{0.3,Cos[π t]},{t,0,2},{y,-−1,1},Epilog-−>{Point[grek]}];*⋆)

As far as the problem description’s call for exact solutions, I think either pp1 or lp1 can be
considered an exact solution object.
lp1 = ListPlot[grek, PlotStyle → Black];

Show[pp1, sp3, lp1]

0.5 1.0 1.5 2.0

-−1.0

-−0.5

0.5

1.0

10. y ' = -5y0.5 (soln y + 5
2 x)

This problem is of interest because of the next one, 11. Problem 10 yields a solution by
DSolve; however, it is impossible to check it. For problem 11 I will skip this one and do a
different autonomous ODE.
eqn = y'[x] ⩵ -−5 y[x]0.5

y′[x] ⩵ -−5 y[x]0.5

sol = DSolvey′[x] ⩵ -−5 y[x]0.5`, y[x], x

y[x] → 0.25 25. x2 -− 10. x C[1] + C[1]2

12 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

rdo = Simplify[eqn /∕. sol]

y′[x] ⩵ -−2.5 25. x2 -− 10. x C[1] + C[1]20.5

rdo1 = rdo /∕. C[1] → 1

y′[x] ⩵ -−2.5 1 -− 10. x + 25. x20.5

PossibleZeroQeqn -− 2.5` 1 -− 10.` x + 25.` x20.5`

False

11. Autonomous ODE. This means an ODE not showing x (the independent variable)
explicitly. (The ODEs in problems 6 and 10 are autonomous.) What will the level curves
f[x, y] = const (also called isoclines = curves of equal inclination) of an autonomous
ODE look like?

ClearAll[y]; f[t_, y_] := 3 y;

The following is the plot for the autonomous ODE featured in the youtube video at http-
s://www.youtube.com/watch?v=SB8PgHo9BIs, featuring Bill Kinney. The blue curve passes
through the y-intercepts identified by their lead coefficients, and many more could be
shown.

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 13

ShowVectorPlot[{1, f[t, y]},
{t, -−4, 4}, {y, -−4, 4}, VectorStyle → {Thick, Red},
VectorScale → {.03, .03, None}, VectorPoints → 20],

Plot-−2 ⅇ3 t, -−3 ⅇ3 t, -−ⅇ3 t, ⅇ3 t, 2 ⅇ3 t, 3 ⅇ3 t, {t, -−4, 4},

PlotStyle → {{Thickness[0.003], Blue}, {Thickness[0.003], Blue}},

Frame → False, Axes → True, AxesLabel → {"t", "y"}

-−4 -−2 2 4 t

-−4

-−2

2

4

y

12 - 15 Motions
Model the motion of a body B on a straight line with velocity as given, y[t] being the
distance of B from a point y = 0 at time t. Graph a direction field of the model (the
ODE). In the field sketch the solution curve satisfying the given initial condition.

13. distance = velocity × time, y[1] = 1

fod = {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}

{{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}

The points show object B at times on x-axis, and the distance is measured vertically.

14 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

Plot[x, {x, 0, 4}, ImageSize → 170,
AspectRatio → Automatic, Epilog → {PointSize[0.03], Point[fod]}]

1 2 3 4

1

2

3

4

15. Parachutist. Two forces act on a parachutist, the attraction by the earth m*g (m =
mass of person plus equipment, g = 9.8 m/sec2 the acceleration of gravity) and the air
resistance, assumed to be proportional to the square of the velocity v[t]. Using Newton’s
second law of motion (mass × acceleration = resultant of the forces), set up a model (an
ODE for v[t]). Graph a direction field (choosing m and the constant of proportionality
equal to 1). Assume that the parachute opens when v = 10 m/sec. Graph the correspond-
ing solution in the field. What is the limiting velocity? Would the parachute still be suffi-
cient if the air resistance were only proportional to v[t]?

 There is a fully developed example at http://www.richardhitt.com/courses/354/sp00/projects/-
clw.pdf. It’s not done in the latest Mathematica version, but it is functional. I am taking the
path of least resistance, using the text answer as a guide to the landmarks of the problem.
ClearAll["Global`*⋆"]

eqn = v'[t] ⩵ 9.8 -−
k

m
v[t]2 /∕. m → 80

v′[t] ⩵ 9.8 -−
1

80
k v[t]2

The air resistance k is assumed to be proportional to v2 . The text answer rolls km into one
ball and writes
eqn2 = v'[t] ⩵ 9.8 -− v[t]2

v′[t] ⩵ 9.8 -− v[t]2

vout = Chop[DSolve[{eqn2, v[0] ⩵ 10}, v[t], t]]
Solve::ifun:

Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. $

v[t] →
3.1305 0.523172 + 1. × 2.718286.26099 t

-−0.523172 + 2.718286.26099 t

Since the velocity at every integer second beyond 0 is equal to 3.13, I have to consider it to
be the limiting velocity. For the limiting velocity, the text answer gives the value 3.1.

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 15

Since the velocity at every integer second beyond 0 is equal to 3.13, I have to consider it to
be the limiting velocity. For the limiting velocity, the text answer gives the value 3.1.
Table[vout /∕. t → n, {n, 0, 12}]

{{{v[0] → 10.}}, {{v[1] → 3.13676}}, {{v[2] → 3.13051}}, {{v[3] → 3.1305}},
{{v[4] → 3.1305}}, {{v[5] → 3.1305}}, {{v[6] → 3.1305}},
{{v[7] → 3.1305}}, {{v[8] → 3.1305}}, {{v[9] → 3.1305}},
{{v[10] → 3.1305}}, {{v[11] → 3.1305}}, {{v[12] → 3.1305}}}

ShowVectorPlot1, 9.8` -− y2, {t, -−4, 4}, {y, -−4, 10},
VectorScale → {0.05, 0.5}, VectorPoints → 30, ImageSize → 350,
Frame → False, Axes → True, AxesLabel → {"t", "y"},

Plot
3.1304951 0.5231 + 1. × 2.718286.26099 t

-−0.52317 + 2.718286.26099 t
, {t, -−4, 4},

PlotStyle → {{Thickness[0.003], Blue}, {Thickness[0.003], Blue}},
PlotRange → {{-−4, 4}, {-−4, 10}}

-−4 -−2 2 4 t

-−5

5

10

y

17 - 20 Euler’s method
This is the simplest method to explain numerically solving an ODE, more precisely, an
initial value problem (IVP). (More accurate methods based on the same principle are
explained in section 21.1). Using the method, to get a feel for numerics as well as for the
nature of IVPs, solve the IVP numerically with a PC or calculator, 10 steps. Graph the
computed values and the solution curve on the same coordinate axes.

17. y ' = y, y[0] = 1, h = 0.1

I am dodging Euler’s method. I’m not too interested in particular methods, unless they are
the most efficient one available at a task.

16 1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb

I am dodging Euler’s method. I’m not too interested in particular methods, unless they are
the most efficient one available at a task.
ClearAll[eqn, sol]

eqn = {y'[x] ⩵ y[x], y[0] ⩵ 1}

{y′[x] ⩵ y[x], y[0] ⩵ 1}

sol = DSolve[eqn, y[x], x]

{{y[x] → ⅇx}}

Plot[Exp[x], {x, -−2, 2}, ImageSize → 250,
Epilog → {Text[Style[□, Large], {0.006, 0.96}]}]

-−2 -−1 1 2

2

4

6

□

19. y ' = (y - x)2, y[0] = 0, h = 0.1

ClearAll[eqn, sol]

eqn = y'[x] ⩵ (y[x] -− x)2

y′[x] ⩵ (-−x + y[x])2

sol = DSolve[{eqn, y[0] ⩵ 0}, y[x], x]

y[x] →
1 -− ⅇ2 x + x + ⅇ2 x x

1 + ⅇ2 x

ExpToTrig[FullSimplify[sol]]

{{y[x] → x -− Tanh[x]}}

Plot[x -− Tanh[x], {x, -−2, 2}, ImageSize → 250,
Epilog → {Text[Style[□, Large], {0.01, -−0.02}]}]

-−2 -−1 1 2

-−1.0

-−0.5

0.5

1.0

□

1.2 Geometric Meaning of y'=ƒ x y. Direction Fields, Euler’s Method.nb 17

